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SUMMARY

Large-eddy simulation (LES) of transitional separating–reattaching flow on a square surface mounted
obstacle has been performed. The Reynolds number based on the uniform inlet velocity and the obstacle
height is 4.5× 103. A dynamic subgrid-scale model is employed in this work. The mean LES results
compare favourably with the available experimental and direct numerical simulation (DNS) data. Extensive
analysis of the time series signals of the velocity and pressure fields at different locations including
positions close to solid surfaces, at the centre and edge of the separated–reattached boundary layer using
the windowed Fourier transform (WFT) and the wavelet transform was performed. The spectra analysis
revealed the nature of the amplified frequencies at all the important locations of the flow field. Excited
modes that could be due to the movement (shedding) of large-scale structures and pairing of such types
of structures are identified. A clear frequency peak was captured just upstream of the separation line. The
value of the frequency peak and the low percentage of the back flow velocity compared to the freestream
velocity in the current case strongly support the idea that this amplified frequency is most likely due to
the Kelvin–Helmholtz (K–H) instability mechanism of the shear layer forming in the boundary of the
small upstream separated region rather than being attributed to the flapping of the shear layer. Copyright
q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The flow over a surface-mounted obstacle is considered as a useful benchmark for many environ-
mental applications including the study of air pollution, wind loading on tall buildings, meteorology,
wind energy applications, flow over road embankments in addition to its wide application in the
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turbo-machinery industry and aerodynamics of road vehicles and aircraft. The flow over a surface-
mounted obstacle constitutes two basic study cases for strongly separated flows occurring both
upstream and downstream of the obstacle. The basic characteristics of such flow configurations
are the length of the recirculating region upstream and downstream of the obstacle. The length
depends on the ratio of the boundary layer thickness of the approaching flow to the obstacle height
and also the geometry of the obstacle itself.

The obstacle flow is influenced by three parameters. The Reynolds number; the blockage ratio
(ratio of the channel height to the obstacle height H/h) and the aspect ratio (of the obstacle l/h).
Previous experimental and computational studies for the obstacle case are associated with the basic
features of the flow in a fully turbulent environment. Bergeles and Athanassiadis [1] and Castro [2]
investigated the influence of the obstacle aspect ratio (l/h) on the mean reattachment length while
Durst and Rastogi [3] performed both experimental and numerical studies to investigate the effect
of varying the blockage ratio from 2 to ∞ (open test section) while keeping l/h constant. Dimaczek
et al. [4] studied the flow around a surface mounted obstacle with different aspect and blockage
ratios including l/h = 1.0 at high Reynolds number (Reh = 42 500) in fully developed channel
flow.

Tropea and Gackstatter [5] experimentally investigated the flow over a fence and a block
mounted in a fully developed channel flow as a function of the Reynolds number, blockage ratio
and length-to-height ratio. The experiments were conducted in a channel for a Reynolds number
range 150�Re�4500 (based on the obstacle height h). Three blockage ratios were employed,
H/h = 4, 2, and 1.33. Regarding the effect of Reynolds number, Tropea and Gackstatter [5]
identified three characteristic regions: the laminar region characterized by a steady increase in
xR/h with Reynolds number; the transitional region identified by an abrupt reduction in xR/h in
some cases, a partial recovery; and a turbulent region in which xR/h does not vary much. For the
fence geometry with a blockage ratio H/h = 4 the mean reattachment length varied in the range
8.5�xR/h�17.25 and for the square block case 5�xR/h�16.

Computational simulation for the obstacle and fence case includes Yang and Ferziger [6] who
performed both a direct numerical simulation (DNS) and large eddy simulation (LES) studies
for an obstacle immersed in a turbulent channel flow (employing a periodic boundary condition
along both the stream and spanwise directions) at Re= 3210 based on the mean velocity above the
obstacle and the obstacle height. Orellano and Wengle [7] conducted both DNS and LES simulation
for a turbulent boundary layer over a fence at low Reynolds number (Re= 3000) based on the
fence height h. They obtained a mean reattachment length of 13.2h and good agreement between
the DNS, LES and the experimental data of Larsen [8] at the same value of Reynolds number
and for the case without user manipulation (excitation). Lee and Bienkiewicz [9] employed the
Smagorinsky model to study the flow of an obstacle in a fully turbulent channel flow at Re= 40 000
(based on the obstacle height) with a blockage ratio of 2. They predicted a mean reattachment
length xR/h = 6.42. However, the Smagorinsky model showed discrepancy when compared to the
experimental data of Dimaczek et al. [4] and the LES data of Werner and Wengle [10] for a similar
geometry in a similar turbulent channel environment at Re= 42 500 especially in the rms of the
U -velocity. Werner and Wengle [10] predicted a mean reattachment length of 7.1h.

It is well established that separated–reattached boundary layers exhibit two characteristic shed-
ding frequencies: shedding at low frequency attributed to the flapping of the separated shear
layer, and shedding at a band of higher frequencies which is a result of movement (shedding) of
large-scale structures dominating the separated boundary layer. The above features have been exten-
sively studied for separated–reattached flows for different geometries. The blunt leading-edge plate
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geometry case has been the subject of many investigations and both experimental and computa-
tional studies have been performed at high Reynolds number (Kiya and Sasaki [11] and Cherry
et al. [12]) and at low Reynolds number (Tafti and Vanka [13] and Abdalla and Yang [14]).
The characteristic shedding frequency which is assumed to be due to the shedding of large-scale
vortices from the separation bubble in these studies is in the range of f xR/U∞ = 0.7–0.8. In
addition to this, others have identified a lower frequency content of order f xR/U∞ = 0.15 which
they attributed to the flapping of the shear layer [11–13].

Cherry et al. [12], Castro and Haque [15], and Laura et al. [16] detected both the low and
high frequency modes of unsteadiness for separated flow behind a normal flat plate with a long
central splitter plate. However, Ruderich and Fernholz [17] observed no dominant frequencies in
their power spectra for the same flow configuration, which led them to believe that there was no
flapping of the reattaching shear layer.

In the backward-facing step flow, both the frequency modes were detected in velocity mea-
surements of Eaton and Johnston [18]. They argued that the observed low-frequency motion on
the backward-facing step is likely to be a consequence of an instantaneous imbalance between the
entrainment rate from the recirculation zone and the reinjection near the reattachment line. In the
backward-facing step experiment by Lee and Sung [19] the two modes of frequency were also
detected in the measured auto-spectra of surface pressure close to separation line.

For the surface mounted obstacle, the phenomenon has not been explored in as much details. Only
Dimaczek et al. [4] has investigated the energy spectra for the wall pressure and the streamwise
velocity fluctuations of a surface mounted obstacle similar to the current case. They did not
observe the low-frequency peak in their work but the pressure spectra showed a broad peak at
higher frequency band ( f xR/U0 ≈ 1.0) and they believe that the restriction caused by the obstacle
might have contributed to widening the spectral distribution considerably.

Castro [20] conducted a numerical study of the instability of laminar symmetric separated wakes.
He concluded that if the backflow velocity is small compared to the free-stream velocity (typically
less than 20%), the low-frequency component is generally absent. His conclusion was supported
by other experimental and DNS studies including the DNS study of Alam and Snadham [21] who
reported a maximum negative velocity above 15% of the free-stream velocity for less than 1% of
the time but no low-frequency component was observed. In a recent investigation for a separated
boundary layer behind a fence geometry, Orellano and Wengle [7] presented the spectra for 9
locations (unmanipulated case) including 3 points upstream of the separation and one point after
reattachment region. Their results did not reveal the low-frequency mode and they did not identify
a dominant peak immediately after separation. However, with increasing distance downstream the
separation line they noticed amplified frequencies although no clear peak is apparent.

Almost all the experimental and numerical work discussed above deal with turbulent separation
at high Reynolds number with the exception of the simulation of Tafti and Vanka [13] and Abdalla
and Yang [14]. In fact, Cherry et al. [12] concluded that the low-frequency phenomena is an integral
feature of turbulent separation. For a transitional flow for the same geometry of Kiya and Sasaki
[11] and Cherry et al. [12], Abdalla and Yang [14] performed an extensive study of the velocity
and pressure spectra and no traces of the low-frequency peak was detected. The dynamic of the
current separated–reattached boundary layer is slightly different from the blunt plate geometry
for which the phenomena is extensively documented but bear many similarities to the fence case.
Two unanswered questions remain: will the change in the geometry impose any difference on the
low-frequency unsteadiness or will the laminar separation serve as a filter to absorb or dampen
it?; could the shedding behaviour of the recirculation region upstream of the obstacle (the standing
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vortex), which distinguish this case from all the case studies cited above, affect the low-frequency
motion?

This paper reports on LES models used to study the transitional flow over a surface-mounted
(square block) obstacle. The prime objectives were to study the physics of transition and perform
extensive analysis of the turbulence spectra at different locations within the computational domain
to identify the characteristic features of the spectra. Such features and their relationship with the
large-scale structures dominating the flow are discussed.

The paper contains details of the numerical model used (Section 2), comparison of the mean flow
variables with experimental results (Section 3), spectral analysis and discussion of the associated
coherent structures (Section 4) and conclusions of the study (Section 5).

2. GOVERNING EQUATIONS AND THE NUMERICAL METHOD

The filtered equation expressing conservation of momentum in a Newtonian incompressible flow
is normally written in an explicitly conservative form

�t (ūi ) + � j (uiu j ) = −�i P̄ + 2� j (S̄i j ) (1)

the strain S̄i j is

Si j = 1
2 (�i ū j + � j ūi ) (2)

P̄ is the physical pressure divided by density.
The mass conservation law is expressed by the zero divergence of the velocity field

�i ūi = 0 (3)

The equation for pressure is developed by taking the divergence of (1)

�i�t (ūi ) + �i� j (uiu j ) = −�i�i P̄ + 2�i� j (�S̄i j ) (4)

� is the total viscosity. By using continuity (3) one finally obtains

�i� j P̄ = �2 P̄ = �i Hi (5)

where

Hi = � j (−uiu j + 2�S̄i j ) (6)

Equation (5) is particularly suitable for the time accurate computation of the pressure in an
incompressible flow simulation using linear differencing. The equation can be Fourier transformed
in z (a very rapid computational task) to obtain a set of decoupled equations, which in Cartesian
form are given by

�2 P̃

�2x
+ �2 P̃

�2y
− k2z P̃ = R̃ (7)

This process can be performed even when the z derivatives are replaced by the finite-difference
formulae, provided z in the simulation is periodic and has an even uniform mesh. The Fourier
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transform requires an even and multiple of 4 mesh in order to be performed. For example, the
second-order central scheme on an even uniform mesh

�2P

�2z
= Pn−1 − 2Pn + Pn+1

�z2
(8)

can be discrete Fourier transformed to give

− 4P̃

�z2
sin2(Kz/2) = − K 2

z P̃ (9)

where

Kz = 2 sin(Kz/2)

�z
(10)

and Kz is the usual discrete Fourier wave number.
The two-dimensional equation (9), one for each value of Kz can be solved very quickly even

when the geometry is complex as long as it is homogeneous in one direction.
The subgrid-scale stress term

�i j = uiu j − ūi ū j (11)

represents the contribution from the subgrid scales and must be modelled. In the present study,
the dynamic model (Germano et al. [22], Lilly [23]) has been applied.

Applying the base (Smagorinsky [24]) model at both filter scales

�i j − 1
3�i j�kk =−2C�2 | S̄ | S̄i j (12)

Ti j − 1
3�i j Tkk = −2C�̂

2 |̂̄S |̂̄Si j (13)

Using the Germano identity (Germano et al. [22]) and following Lilly [23], C can be evaluated as

C = 1

2

Li j Mi j

Mi j Mi j
(14)

This evaluation of C differs from that of Germano et al. [22] expressed as

C = 1

2

Li j S̄i j
Mi j S̄i j

(15)

In the current simulation C is defined as

C = 1

2

〈Li j Mi j 〉
〈Mi j Mi j 〉 (16)

where the angle brackets represent an average over the homogeneous z in which C will not change.
The resulting C is a function of time and the inhomogeneous co-ordinates x and y.

In finite volume calculations the test-filtered flow quantities can be computed by spatial averaging
of the calculated large scale variables over a few grid cells (typically 9 in the current study).

The explicit second-order Adams–Bashforth scheme is used for the momentum advancement
except for the pressure term. A disadvantage of explicit schemes is the restriction imposed on the
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magnitude of the time step to be used. To ensure numerical stability for explicit schemes the time
step must be small enough to satisfy a certain stability criteria. In the code used here, both the
Courant–Friedrich–Lewy (CFL) number defined as:

CFL=�t

( |u|
�x

+ |v|
�y

+ |w|
�z

)
(17)

and the diffusion stability (DFS) number, defined as

DFS= �t�t

(
1

�x2
+ 1

�y2
+ 1

�z2

)
(18)

should be kept below a maximum value of 0.35 to ensure a solution free from any numerical
instability (the CFL number in the current case is of order 0.18 and the DFS number is much
lower). For this method, the CFL number usually fluctuates around this value (0.18), however,
other LES codes adopt the method of fixing the CFL number and estimate the physical magnitude
of the time step prior to each time step. It is worth pointing out that the value of these two
parameters are grid dependent when LES is used, especially the DFS number which is found to
increase considerably with mesh refinement near a solid boundary, hence demanding smaller time
steps.

Due to the use of explicit schemes in solving the momentum equation, it is very important to
find an efficient numerical method for solving the Poisson equation of pressure (Equation (5)). The
code employs the multigrid method which is considered favourable for unsteady flow simulations
(Ferziger and Peric [25]).

The spatial discretization is the second-order central differencing scheme which is widely used
in LES owing to its non-dissipative and conservative properties. The code employs the conventional
staggered grid system (Harlow and Welch [26]). The control volume cell for the pressure does not
coincide with control volume cells for velocities.

2.1. Code validation

The code was validated against standard fully developed channel flow [27] with the Smagorinsky
model [24]. The dynamic model was used to study the physics of transition over a blunt plate
geometry aligned horizontally to an incoming laminar flow and validated with experimental work
[14, 28–30].

2.2. Flow configuration, mesh and boundary conditions

Figure 1 shows the computational domain and mesh used in the study. Two simulations were
performed for the obstacle case. In the first simulation 288× 128× 64 cells along the streamwise,
wall-normal and spanwise directions, respectively, were employed. The inflow boundary is at 5h
distance from the upstream side of the obstacle while the outflow boundary is at 30h measured
from the obstacle upstream side. From previous experience with related flows [28–30] we found
that between 4 and 5H is sufficient to avoid any interaction of the inflow with that close to
the leading edge of the obstacle. Depending on the length of the predicted mean reattachment
length, locating the outflow boundary 30h downstream of the separation edge with the fine mesh
used was found to be adequate in ensuring no interaction with the downstream flow field. The
lateral boundary is at 8h distance from the lower surface (y = 0), corresponding to a blockage
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Figure 1. The computational domain showing the mesh used in resolving the flow over a surface-mounted
obstacle for the two simulations.

ratio of 8 for the first simulation. The spanwise dimension of the domain is 4h. Yang and Voke
[31] performed simulations using a spanwise dimension of 2h without any appreciable change in
the behaviour of the flow (less than 5% difference in terms of averaged statistics for both mean
and turbulence stress when compared to the case with spanwise dimension of 4h). A free-slip
but impermeable boundary is applied at the lateral boundary. In the spanwise direction, the flow
is assumed to be statistically homogeneous and periodic boundary conditions are used. No-slip
boundary conditions are used at all other walls. At the inflow boundary, a uniform velocity profile
is applied and the Reynolds number based on the inflow velocity and obstacle height is 4500. At
the outflow boundary, a convective boundary condition is applied. Non-uniform grid distributions
are used in the x- and y-direction with finer resolution in the vicinity of the obstacle. The reason
for refining the grid in this region is to resolve the standing vortex which forms upstream of the
obstacle, the shear layers that develop at the separation line and the recirculation region downstream
of the obstacle. A uniform grid distribution is used in the spanwise direction. In terms of wall
units based on the friction velocity downstream of reattachment at x/h = 27, the streamwise mesh
sizes vary from �x+ = 6.77 to �x+ = 43.04, while �z+ = 10.625 and at the wall �y+ = 1.28.
The time step used in this simulation is 4.75× 10−6 s (0.001425(h/U0)). The simulation ran for
129 000 time steps equivalent to more than 5 flow passes through the domain (or residence times)
to allow the transition and turbulent boundary layer to be established, i.e. the flow to have reached
a statistically stationary state. The averaged results were gathered over a further 249 900 steps,
with a sample taken every 10 time steps (24 990 samples) averaged over the spanwise direction
too, corresponding to more than 10 flow passes or residence times.

The second simulation used 320× 220× 64 cells along the streamwise, wall-normal and span-
wise directions, respectively. The computational domain was made slightly shorter than the previous
simulation and the lateral boundary is at y = 15h distance from the lower surface (y = 0) resulting
in a blockage ratio of 15. In terms of wall units based on the friction velocity downstream of
reattachment at x/h = 23, the streamwise mesh sizes vary from �x+ = 6.09 to �x+ = 19.988,
while �z+ = 10.96 and at the wall �y+ = 1.14. The time step used in this simulation is 1.5× 10−6

(0.010125(h/U0)). The simulation ran for 95 000 time steps to allow the transition and turbulent
boundary layer to be established, i.e. the flow to have reached a statistically stationary state. The
averaged results gathered over 35 000 steps, with a sample taken every 10 time steps (3500 samples)
averaged over the spanwise direction too, shows no significant changes in the mean reattachment
length from the previous simulation. For this reason and the larger run time required for the second
simulation, results from the first simulation are presented here.
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3. RESULTS AND DISCUSSION

The current LES results are compared with the experimental data by Tropea and Gackstatter [5]
whose experimental work addresses the obstacle and fence geometry in the transitional range of
Reynolds numbers. The work of Tropea and Gackstatter [5] is mainly concerned with the basic
parameter of this flow which is the variation of the mean reattachment length with blockage ratio
and Reynolds number. For this reason, the LES data is also compared with the experimental work
of Larsen [8] and the DNS data of Orellano and Wengle [7]. Both studies deal with a separated
boundary layer behind a fence geometry at Reynolds number of 3000 based on the fence height
with a blockage ratios of 5 for the DNS of Orellano and Wengle [7] and 7.5 for the experimental
work of Larsen [8]. Comparison of the mean variables are presented at positions downstream of
the separation line since the separated boundary layer dynamics in the two cases is similar. The
main difference between this case and the current transitional LES simulation is the fully turbulent
separation in [7, 8].

3.1. Mean flow variables

3.1.1. Mean reattachment length. An important parameter characterizing a separated–reattached
flow is the time mean position of the reattachment. The method used here to determine the mean
reattachment location is described by Hung et al. [32] in their DNS study for a backward-facing
step flow. The method involves determining the location at which the mean velocity U = 0 at the
first grid point away from the wall. The time averaged velocity vectors are shown in Figure 2.
For the current transitional separated-boundary layer flow, the time averaged results is similar to a
steady laminar separated flow, but with different bubble shape and separation length. Figure 2(a)
shows clearly one separation bubble starting from the separation line (the upstream side of the
obstacle) reattaching at a downstream location x/h ≈ 15.42 giving a mean reattachment length
of ≈ 15.5h as shown in Figure 3. The second simulation with the finer mesh and blockage ratio
of 15 produced the same mean reattachment length—an indication of the fact that the blockage
ratio of 8 is satisfactory in eliminating the effect of the blockage ratio and the first mesh is
fine enough to produce the same quality mean value compared to the second. For the obstacle
case, Tropea and Gackstatter [5] reported a mean reattachment length of 15.5h at Reh ≈ 1000.
This value of Re is within the transitional range of their experiment. But bearing in mind that
the experimental work of Tropea and Gackstatter [5] was done under fully developed turbulent
channel flow, then the level of free stream turbulence is higher than the current case. It is well
documented that free stream turbulence and turbulent separation reduces the mean reattachment
length compared with transitional flow conditions [2, 30]. Taking into consideration the fact that the
experiment of Tropea and Gackstatter [5] was conducted for a fully developed channel flow,
the predicted mean reattachment length is expected to be slightly longer than that reported by
the experiment. However, the agreement in predicting this parameter is good. Other experimental
and simulation results for both the block and fence geometry have shown similar results. Bergeles
and Athanassiadis [1] reported a value of xR/h = 11 for a turbulent boundary layer of thickness
0.48h while Tillman’s [33]measurement for a turbulent thick boundary layer (3.3h) is xR/h = 12.5.
Durst and Rastogi [3] reported a value of xR/h = 16 also under a turbulent boundary layer condition.
Similar scatter was reported for the fence geometry. Tropea and Gackstatter [5] reported a value
of xR/h = 17 under transitional flow conditions and the DNS study of Orellano and Wengle [7]
reported xR/h = 13.2 (12.8 for the LES with Smagorinsky model). Larsen [8] reported a value of
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Figure 2. (a) Time-averaged mean vectors showing the mean reattachment length; and (b) and (c) are
enlarged images for the region upstream and immediately downstream of the obstacle, respectively.

xR/h = 11.7 from his experimental work which is conducted under a large turbulence intensity.
Comparing the current LES results with the scatter of the results above, it is clear that the LES
prediction is within the range for the current transitional flow.
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Figure 3. Streamwise mean velocity profile at the first cell from the solid surface
along the streamwise direction.

In addition to the main recirculation zone downstream of the obstacle, the LES results show a
secondary separation zone immediately downstream of the obstacle (at the lower corner) of order
2.6h length (Figure 2(c)) and 0.65h height. The DNS of Orellano and Wengle [7] reported 2.7h
length and the LES 2.6h for this separation zone. For a fully turbulent channel flow under high
blockage ratio, Yang and Ferziger [6] reported a value of 1.76h and height 0.36h from an LES
simulation which clearly illustrates the effect of blockage ratio and the turbulent separation effect.
In addition to the main separation zone downstream, the LES shows a further zone upstream of
the obstacle of order 2.5h length and 0.75h height (Figure 2(b)) compared to 1.51h length and
0.37h of the LES of Yang and Ferziger [6]. The DNS of Orellano and Wengle [7] reported 2.0h
length and the LES 1.9h for this separation zone. It is usually termed the standing vortex and it
is a characteristic of the surface-mounted obstacle flow. The LES of Yang and Ferziger [6] also
showed a small recirculation zone at the lower corner upstream of the obstacle which was also
captured in the current LES study as shown in Figure 2(b).

3.1.2. Mean velocity field. Due to the scarcity in the data from almost all the papers reporting the
separated boundary layer of an obstacle (including Tropea and Gackstatter [5]), the LES results
are also compared with the experimental data of Larsen [8] and the DNS data of Orellano and
Wengle [7] of a separated boundary layer behind a fence geometry.

Figure 4 compares the mean streamwise velocity distribution U/U0 at 6 locations downstream
of the separation line with the experimental data of Tropea and Gackstatter [5] (available only at
3 locations), Larsen [8] and the DNS data of Orellano and Wengle [7]. The results show good
agreement with the data of Larsen [8] and the DNS data of Orellano and Wengle [7]. The free-
stream velocities of the data from Tropea and Gackstatter [5] are bigger than those predicted by the
LES and the other two results, and peak at lower y-values. One of the reasons for this discrepancy
is the difference in blockage ratio used by Tropea and Gackstatter [5] which is very low (2, 5 in
the case of Orellano and Wengle [7] and 8 for the current LES).

Profiles of the rms streamwise velocity, urms, normalized by U0, at the same six stations are
shown in Figure 5. The agreement between the LES results and the data of Larsen [8] and the
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Figure 4. Profiles of mean streamwise velocity Um/U0 at six streamwise locations measured from
the separation line (leading edge). Left to right x/xR = 0.05, 0.2, 0.4, 0.6, 0.8, 1.025. Also shown are
measurements by Tropea and Gackstatter [5] (triangle), Larsen [8] (square) and the DNS data of

Orellano and Wengle [7] (circle) at Re= 3000.
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Figure 5. Profiles of mean streamwise turbulent intensity urms/U0 at six streamwise locations measured
from the separation line (leading edge). Left to right x/xR = 0.05, 0.2, 0.4, 0.6, 0.8, 1.025. Also shown are
measurements by Larsen [8] (square) and the DNS data of Orellano and Wengle [7] (circle) at Re= 3000.

DNS data of Orellano and Wengle [7] is encouraging. No measured data were presented by Tropea
and Gackstatter [5].

Figure 6 shows the profiles of vrms/U0 at the same six locations. The current LES results show
favourable agreement with the DNS data of Orellano and Wengle [7] (no data from Larsen [8] and
Tropea and Gackstatter [5] is available). One of the reasons for the difference between the LES
and DNS results (especially in the peak value at positions at x/xR = 0.4, 0.6, and 0.8) is thought
to be due to the difference in the blockage ratio. The subgrid scale turbulence model used in the
LES could also contribute to this difference.

It is valuable to mention at this point the importance of the parameter �/h on which the
significance of the blockage ratio depends as reported by Castro and Fackrell [34]. Here, � is the
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Figure 6. Profiles of mean streamwise turbulent intensity vrms/U0 at six streamwise locations measured
from the separation line (leading edge). Left to right x/xR = 0.05, 0.2, 0.4, 0.6, 0.8, 1.025. Also shown

are the DNS data of Orellano and Wengle [7] (circle) at Re= 3000.

thickness of the boundary layer which would be present at the obstacle position in its absence. As an
example, measuring the drag coefficient in a fence flow arrangement, Castro and Fackrell [34] found
that the drag-coefficient deviation is significant at low values of fence-height to boundary-layer
thickness and relatively insignificant at high values of fence-height to boundary-layer thickness. It
would have been more useful to compare the effect of blockage ratio and the ratio �/h for the current
study with the experimental and DNS data used for validating the results. For the current LES study,
no simulation in the absence of the obstacle was performed to evaluate � although it is possible
to estimate the ratio as 0.16��/h�0.258 based on the analytical solution for (laminar/turbulent)
boundary layer equations in zero pressure gradient (flat plate flow) with Reynolds number based on
the distance from the obstacle leading edge. There is a lack of data for � for both the experimental
and DNS data used for comparison. However, taking into consideration the similar values of both
Reynolds number and blockage ratio for [7, 8], it is not expected that the difference in blockage
ratio will be the only reason for the difference between the results discussed above.

3.2. Transition process

The flow separates at the block leading edge and the boundary layer develops downstream and
becomes fully turbulent long before reaching the out-flow boundary (Figures 7(a) and (b)). In the
earliest stages of the simulation, a steady separation bubble appears at the separation line (the
leading-edge) and takes a 2D form similar to that found for a laminar separation bubble at low
Reynolds number. The stable bubble moves along the short obstacle width (h) while growing in
size. Upon leaving the trailing edge of the block, another bubble takes its place at the leading
edge. Eventually, many smaller (2D) bubbles were observed to leave the block edge and travel
downstream. These bubbles are kept far from the lower surface boundary and hence they maintain
their coherence and two-dimensionality for a considerable distance downstream of the separation
line. Pairing of these kinds of vortices to form a larger vortex is illustrated in the pressure field
(Figure 7(b)). In this laminar fashion, large-scale structures resulting from the pairing of smaller
vortices are detached and shed from the main body of the bubble as seen from the pressure field
(Figure 7(b)).
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Figure 7. Instantaneous velocity vectors and the corresponding pressure contours in the (x, y)
plane: (a,b) at t = 0.057 s; and (c,d) at t = 0.44175 s.
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Figure 8. Instantaneous spanwise vorticity in the (x, y) plane.

However, the picture changes significantly at the onset of transition. At a certain stage the free
shear layer formed in the bubble becomes inviscidly unstable owing to small disturbances imposed
in the early stages of the simulation, breaking the strong vortical structures that formed toward the
end of the bubble into smaller vortical structures as the first sign of two-dimensional instability
and vortex shedding. The shear layer becomes more unstable and the newly formed structures
break up again, with coherent 3D structures appearing. A general view of the instantaneous flow
field of the transition bubble at time step 93 000 is shown in Figures 7(c), and (d).

After the flow reaches a statistically stationary state, the transition process is clearly visi-
ble (Figure 8) which shows the instantaneous spanwise vorticity at various times (1000 time
steps interval) in the (x, y) plane at z/h = 2 (centre of the computational domain). The vortic-
ity at different z-planes looks very similar. In the beginning of the bubble a free shear layer
develops and 2D spanwise vortices form; these are inviscidly unstable via the Kelvin–Helmholtz
(K–H) mechanism and any small disturbances present grow downstream with an amplification
rate larger than that in the case of viscous instabilities. Further downstream, the initial spanwise
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Figure 9. Contours of axial velocity and pressure fluctuations at plan views immediately above
the obstacle (at y/h = 1.04).

vortices are distorted severely and roll up, leading to streamwise vorticity formation associated
with significant 3D motions, eventually breaking down into relatively smaller turbulent structures
before the reattachment point and rapidly developing into a turbulent boundary layer subsequently.
It is noticeable that the region 0�x/h�6, −1�y/h�0 is almost free from any traces of the
spanwise vorticity; an indication that either a ‘dead region’ exists (characterized by very low
velocity variations) or the entrainment (mixing rate) is very low and hence almost a laminar re-
gion. Looking back at the instantaneous velocity vectors shown in Figure 7(c), it is clear that
the region between 0�x/h�2.5 is occupied primarily by a counter-rotating vortex (clearly iden-
tified from the mean vectors shown in Figure 2(c)) followed by a strong back flow between
2.5�x/h�6. Flow visualization (discussed in Section 4) has shown that the flow is dominated
by 2D K–H rolls which will only come into contact with the lower surface between 6�x/h�8
leaving the region immediately downstream of the obstacle and up to x/h = 8 with very little
mixing.

The 2D nature of the flow at the separation edge and for a short distance downstream can also be
clearly observed from the plan views for both the axial velocity and pressure fluctuations contours
immediately above the obstacle height (Figures 9(a) and (b), respectively).
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4. TURBULENCE SPECTRA

4.1. Spectra points selection

To investigate the shedding phenomena for the obstacle case carefully, extensive data of velocity and
pressure fields were calculated at 31 points covering the whole computational domain (Figure 10).
The distribution of the points are either close to the surface, at the edge or at the center of the
shear layer. In the present study, the centre of the shear layer is defined as the y-location where
the rms value of the streamwise velocity (urms) attains a maximum value, consistent with the
definition of Kiya and Sasaki [11]. The edge of the shear layer is defined as the locus of points
where urms/U0 has a value of 2.5%. This definition is consistent with the experimental studies of
Dijalali and Gartshore [35] and Cherry et al. [36]. In the current case, few samples are collected
to approximate the position of the edge and the centre of the shear layer prior to sample collection
for the spectra analysis.

Kiya and Sasaki [11] believe that the low-frequency motion is noticeable close to the separation
point rather than downstream locations because the cross-sectional dimensions of the rolled-up
vortices are much larger than the spatial extent of the flapping of the shear layer further downstream
of the separation line. For this reason 3 points are located immediately upstream of the separation
line (1, 2, 3 in Figure 10 and Table I). The spanwise location of these points is at the centre of
the computational domain (z/h = 2.0).
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Figure 10. Locations of points for spectral analysis.

Table I. Spectra points coordinates.

Point 1 2 3 4 5 6 7 8 9 10 11

x/h −0.375 −0.375 −0.375 0.5 0.5 1.65 1.65 1.65 2.7 2.7 4
y/h −0.7 −0.5 0.04 0.2 0.65 −0.33 0.4 0.85 0.46 0.92 −0.335
Point 12 13 14 15 16 17 18 19 20 21
x/h 4 4 5.36 5.36 6.7 6.7 6.7 8 8 10
y/h 0.54 1.0 0.63 1.15 −0.335 0.63 1.14 0.64 1.14 0.64
Point 22 23 24 25 26 27 28 29 30 31
x/h 10 13.5 13.5 13.5 16.8 16.8 20.2 20.2 23.6 23.6
y/h 1.14 −0.335 0.64 1.14 −0.335 0.0 −0.335 0.0 −0.335 0.0
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A total of 24 990 samples at each point taken every 10 time-steps with time step= 4.75× 10−6 s
(sampling frequency 21.053 kHz) were collected. This corresponds to a total period of 1.187025 s.
Both the traditional Fourier transform and the evolving wavelet transform methods were used
to process the time series signals of the velocity and pressure fields. At this point it is worth
highlighting the advantages and disadvantages of these two methods.

4.2. Windowed Fourier transform (WFT) and wavelet transform

It is common practice to extract the local-frequency information from a signal using the Fourier
transform. The Fourier transform is performed on a segment of length T from a time series of time
step �t and a total length N�t , thus returning the frequencies from T−1 to (2�t)−1. The segment
can be windowed with an arbitrary function or a Gaussian window (Kaiser [37]). Kaiser [37] argued
that the windowed Fourier transform (WFT) represents an inaccurate and inefficient method of
time-frequency localization, as it imposes a scale or ‘response interval’ T into the analysis. The
inaccuracy arises from the aliasing of high- and low-frequency components that do not fall within
the frequency range of the window. The inefficiency comes from the T/2�t frequencies, which
must be analysed at each time step, regardless of the window size or the dominant frequencies
present. In addition, several window lengths must usually be analysed to determine the most
appropriate choice.

The spectra of transitional/turbulent flow usually contain a range of frequencies. In applications
where vortex shedding or pairing is involved there might be more than one dominant frequency.
For analysis where a predetermined scaling may not be appropriate because of a wide range of
dominant frequencies (such as signals resulting from a transitional/turbulent flows), a method
of time-frequency localization that is scale dependent, such as wavelet analysis, might be more
successful and has been considered in this study.

The wavelet transform can be used to analyse time series that contain non-stationary powers at
many different frequencies (Daubechies [38]). For a time series, xn , with equal time spacing �t and
n = 0, . . . , N − 1, consider a wavelet function, �0(�) that depends on a non-dimensional ‘time’
parameter �. To be admissible as a wavelet, this function must have zero mean and be localized
in both time and frequency space (Farge [39]). An example is the Morlet wavelet, consisting of a
plane wave modulated by a Gaussian

�0(�) = �−1/4 ei�0� e−�2/2 (19)

where �0 is the non-dimensional frequency, taken to be 6 to satisfy the admissibility condition
(Farge [39]).

‘Wavelet function’ usually refers to either orthogonal or non-orthogonal wavelets. The use of an
orthogonal basis implies the use of the discrete wavelet transform, while a non-orthogonal wavelet
function can be used with either the discrete or the continuous wavelet transform (Farge [39]). The
method used in the current analysis (based on the code developed by Torrence and Compo [40]),
employs the continuous transform, although all of the results for significance testing, smoothing
in time and scale, and cross-wavelets are applicable to the discrete wavelet transform.

The continuous wavelet transform of a discrete sequence xn is defined as the convolution of xn
with a scaled and translated version of �0(�)

Wn(s) =
N−1∑
n′ = 0

xn′�∗
[
(n′ − n)�t

s

]
(20)
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where the (∗) indicates the complex conjugate. This indicates that the transform is divided into
real and imaginary parts or the ‘amplitude’ and ‘phase’. The amplitude is taken as |Wn(s)| and
the wavelet power spectrum is defined as the absolute value squared of the wavelet transform
(|Wn(s)|2) and gives a measure of the time series variance at each scale (period) and at each time.
Thus, by varying the wavelet scale s and translating along the localized time index n, one can
construct a picture showing both the amplitude of any features versus the scale (period) and how
this amplitude varies with time.

Both of the methodologies mentioned above were used here to elucidate the frequency contents
of the extensive time series for the velocity and pressure fields. A well tested code utilizing the
WFT methods for auto-correlation is used to process the data. The Hanning window (famous for
its smallest aliasing error) is used in the WFT code. The code divides the data into segments each
of magnitude 2n . The power factor n should be selected dependent on the number of samples
collected (usually 13) which will automatically define the resolution frequency as 1/(2n × �t).
However, if the number of samples is small, then n might take a smaller value. In the current
case, n = 13 resulting in 3 blocks and a frequency resolution of the data is 2.57Hz. The maximum
frequency that can be resolved is 10.526 kHz.

For the wavelet transform, the Morlet wavelet is used, and the transform is performed in Fourier
space using the method described in Torrence and Compo [40]. Other wavelet bases, such as the
Paul and Mexican hat, were tested and gave the same qualitative results. The wavelet scale s is
almost identical to the corresponding Fourier period of the complex exponential, and the terms
‘scale’ and ‘period’ will be used synonymously. A code developed by Torrence and Compo [40]
was modified to perform the analysis for the time series signals shown in this section.

Another important parameter in wavelet analysis of any time series is the choice of scales. Once
a wavelet function is chosen, it is necessary to choose a set of scales s to use in the wavelet
transform described by relation (20). The scales are usually written as fractional powers of 2 as

S j = S02
j� j , j = 0, 1, . . . , J (21)

J = � j−1 log2(N�t/S0) (22)

where S0 is the smallest resolvable scale, which should be chosen so that the equivalent Fourier
period is approximately 2�t and J determines the largest scale. The choice of a sufficiently small � j
depends on the width in spectral-space of the wavelet function. For Morlet wavelet, a � j of about
0.5 is the largest value that still gives adequate sampling in scale [40]. A smaller value of � j gives
finer resolution, and in the current analysis � j = 0.25. The largest scale, J, is taken as 48, giving
a total of 49 scales ranging from approximately zero to 0.327 s. Note that relation (22) estimates
J as 52, however, this value does not add any significant contents in the wavelet power spectra.
Finally, in applying the wavelet analysis for any time signals, it is recommended by Torrence and
Compo [40] that the Fourier transform should be performed first and used as a guidance to explain
the wavelet power spectra. It is worth pointing out that when applying wavelet analysis for time
signals from a turbulence field, then objectivity and care should be considered to avoid misleading
results. The selection of the variables mentioned above appeared to provide a smooth picture of
the wavelet power spectrum and efficiently delineate the content of the signal processed.

4.3. Discussion

Figures 11(a) and (b) show the time signals recorded for the streamwise velocity u and the wall-
normal component v for point 3 immediately upstream of the separation point (Figure 10). The
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Figure 11. The time series, frequency spectra and wavelet spectra for the velocity components u
and v: (a) time signal for u; (b) time signal for v; (c) frequency spectra using WFT; (d) wavelet

transform for u; and (e) wavelet transform for v.
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WFT for the two velocity components is shown in Figure 11(c) while the wavelet transform for
u and v appear in Figures 11(d) and (e), respectively. In Figures 11(d) and (e), the vertical axis is
the period which is equivalent to the scales and represents an approximate measure to the Fourier
period of the signal. The spectra of points 1 and 2 do not show any frequency content and are not
presented here. However, the spectra obtained from the WFT for the velocity u and v of point 3
(Figures 11(c)) clearly show a sharp frequency peak (band) centred at approximately 105Hz for
both velocity components. This is equivalent to (a normalized value of) 5.425(U0/xR).

The wavelet power spectrum for the velocity component u (Figure 11(d)) shows a clear con-
centration that most likely corresponds to the frequency peak displayed in Figure 11(c) with
additional details. The wavelet power spectra contours give two important pieces of informa-
tion. The wavelet power contours show that most of the power is concentrated within a band of
0.2–0.33 s (0.2�period�0.33), although there is a small power concentration at shorter periods
(0.1�period�0.2) which seems to be associated with the first band. The wavelet power spectrum
also shows the variation of the frequency of occurrence and amplitude of the signal processed.
In this regard, Figure 11(d) clearly shows that the high power concentration occurred in the time
between 0.175�t�0.5 (centred at t = 0.35) and the other event associated with the first band
having lower amplitude and occurs in a shorter period 0.45�t�0.55. The figure also show there is
another power content within the time span of the signal but with lower amplitude and narrower
and lower bands. It also indicates that within the time span of the time signal, the event (with
higher power content) is not repeated, though towards the end of the time there is evidence that
it might repeat itself (i.e. the cycle behaviour of the mechanism responsible for the event). If
the samples have been collected over a sufficient long time period, there is a high possibility
that the contours might show the possible re-occurrence of the high power concentration event as
Figure 11(d) indicates. In fact, the wavelet power spectrum is an exact interpretation to the time
signals. Compared to the time signal (Figure 11(a)), it is clear that whenever there is a peak in the
velocity magnitude shown by the time signals, it is captured in the wavelet power spectrum at the
same time, with the representative amplitude of the signal.

The WFT spectra for the normal velocity v are similar to that of the streamwise velocity
component u (Figure 11(c)). The peak of the frequency is at the same value for u. However, the
wavelet spectra shown in Figure 11(e) display a slightly different picture. The wavelet spectra
show that the power is concentrated at two overlapping bands; the first is 0.275�period�0.33 and
the other at a lower band, specifically 0.2�period�0.3. The first power concentration took place
between 0.025�t�0.3 and the other power concentration occurred later during the time-span of
the signal, at 0.7�t�1.1. Comparing the power contents in the wavelet spectra to the time series
(v signal Figure 11(b)), it is clear that the wavelet spectra have interpreted the time signal correctly.
There are two clear peaks in the time signal for the normal velocity v, the first is centred at t = 0.1 s
and the other is centered at t = 0.98 s and they are clear in the power spectra in Figure 11(e).
The WFT does not show two amplified frequencies but only one. Because the wavelet analysis
method used here is strongly connected to WFT methods, the only way to interpret the two power
concentration shown in Figure 11(d) is that they correspond to the same event (frequency peak)
displayed by the WFT transform. The fact that they happened at two distinctively separated times
indicates the frequency of occurrence of this event in time. This shows that the total time of the
signal in this study is sufficient for the velocity v peaks to reoccur.

From the discussion of these two spectra, it is clear that the wavelet power spectra provide
only qualitative results (many criticise the method for this feature). However, it does give a clear
picture of the extent of the event (amplitude) and any smaller events associated with it; and above
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all it gives an indication of the point in time at which the event occurs, and the approximate
period needed for the event to reoccur. This information could be useful in controlling such events
(damping or exciting as required for specific applications).

It is the trend in almost all the work done in separated–reattached flow that frequency peaks in
the region close to the separation line are attributed to the flapping of the shear layer. However, the
normalized value is much higher than the corresponding value of what is termed low-frequency
motion, observed in separated–reattached flow in different geometries (mainly the blunt plate
geometry and the backward-facing step) which is in the range of 0.1U0/xR� f �0.18U0/xR. The
high normalized value in the current case is partly due to the longer mean reattachment length
for the transitional flow under study (when compared to those mentioned in the literature and for
which this range applies).

Moreover, it was reported by Castro [20] that if the backflow velocity is small compared
to the free-stream velocity (typically less than 20%), the low-frequency component is generally
absent. With reference to the mean velocity profiles shown at Figure 4, the maximum backflow
velocity rarely exceeds 15% of the free-stream velocity. On further investigation to the mean
and instantaneous flow fields at other positions within the recirculation flow downstream and
upstream the obstacle (at different times), the maximum back flow was not found to exceed the
value mentioned above. Hence, the only possible explanation for this amplified frequency is due
to the K–H instabilities in the shear layer forming as a result of the small upstream separated
region (the standing vortex). The distinction of this flow compared with the rest of the geometries
mentioned here (the blunt plate and the backward-facing step) is that none of them is characterized
with a recirculation region upstream of the separation line. A closer look at the nature of the
standing vortex is revealed by (z–y) slices of the instantaneous vectors shown in Figures 12(a) (at
x/h = −0.75) and (b) (at x/h = −0.425). The instantaneous vectors show systems of small-scale
pairs of counter rotating vortices forming systems of the well known �-shaped vortices dominating
the recirculation region upstream of the obstacle (the standing vortex). Close to the upstream side
of the obstacle, the height of the vortices can be seen to reach y/h ≈ 0.75. These vortices start to
build from 2.5h distance upstream of the obstacle (the length of the recirculation region upstream
of the obstacle, Figure 2), and collide with the upstream side of the obstacle.

In the numerical study of the instability mechanism in transitional separating–reattaching flow for
a blunt plate geometry, Abdalla and Yang [28] proved that the boundary layer is indeed unstable via
the K–H instability mechanism and the value of the Strouhal number based on the plate thickness,
freestream velocity and the characteristic frequency observed is in the range 0.225�St�0.275.
In the current study, the Strouhal number based on the obstacle height, the free stream velocity
and the observed frequency (St = f h/U0) is equivalent to St = 0.242. This is comparable to the
value of 0.225�St�0.275 reported by Abdalla and Yang [28] which is further evidence that the
observed frequency in the current case is due to K–H instability mechanism.

Figures 13(a) and (b) are the WFT spectra and the wavelet spectra, respectively, for the pressure
at point 4 (Figure 10). The WFT frequency spectra does show a broad clear peak centred at
f = 500Hz (normalized value f �/U∞ ≈ 0.028, where � is the momentum thickness at separation).
In turn, the corresponding wavelet power spectra display a clear power concentration which
indicates that the signal peak took place at 0.5�t�0.8 s although its effects (smaller amplitudes
surrounding the peak) span almost the whole life span of the signal (0.15�t�1.05). The power
concentration is at a band of 0.25�period�0.34 and it is favourable to associate this event with the
peak frequency shown by the corresponding WFT spectra. This value of frequency is comparable to
that of the most amplified free shear-layer disturbances in the linear instability theory. A comparable
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Figure 12. Instantaneous vectors (y–z)-slices at two different locations immediately upstream of the obstacle
revealing pairs of counter-rotating vortices: (a) x/h =−0.75; and (b) x/h =−0.425.

value of f �/U∞ = 0.016 was reported by Dovgal [41] for the unexcited laminar separation bubble
behind a 2D bump on a flat-plate surface at low Reynolds number (Re= 2120). This is likely to
be due to the interactions of the shed K–H rolls with the solid surface of the obstacle. In addition
to this main power concentration, other events (with less amplitude) can be seen in the wavelet
power spectrum mainly at 0.25�t�0.5 and at 0.9�t�1.1 occurring at a narrower and lower band
of order 0.1�period�0.175. Such kind of smaller-scale turbulent events are smoothed out in the
WFT, an indication to the superiority of the wavelet power spectra method over WFT.

Figure 13(c) shows the WFT frequency spectra for the velocity field (u, v and w) superimposed
for point 5. The frequency spectra for the velocity field show a broad band at higher frequency
( f ≈ 1000) which is associated with the power concentration appearing in the wavelet power
spectra for the velocity u shown in Figure 13(d). The wavelet indicates that the signal peak started
with a lower band (0.2�period�0.25) between 0.25�t�0.65 and gradually spread to a higher
band (0.25�period�0.34) between 0.7�t�1.1. Once again such detailed information offered by
the wavelet analysis could be quite helpful in understanding the transient evolution of these signals
and the dynamics of the coherent structures responsible for their occurrence. Both the WFT and
the wavelet power spectra indicate that the amplitude of these events are weak.

Figure 14(a) is an example of the WFT spectra for the velocity field (u, v and w) at point 9
(Figure 10) at the centre of the shear layer. The WFT spectra for the rest of the points at the centre
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Figure 13. Spectra for points 4 and 5: (a) Fourier transform for the pressure field for point 4; (b)
wavelet transform for the pressure field for point 4; (c) Fourier transform for the velocities u, v,

and w for point 5; and (d) wavelet transform for the velocities u for point 5.
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Figure 14. Spectra for the velocity field for point 12: (a) Fourier transform for the
velocity u, v, and w; (b) wavelet transform for velocity u; (c) wavelet transform

for velocity v; and (d) wavelet transform for velocity w.
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Figure 15. Spectra for velocities u and v at point 8 (edge of the shear layer): (a) Fourier transform for
the velocity u, v; and (b) wavelet transform for velocity u.

of the shear layer (points 7, 12, 14, 17, 19, 21 and 24) show similar behaviour. The WFT spectra is
quiet and show no details of any peak frequencies and resembles that of a fully developed turbulent
boundary layer. Taking into consideration that these points are within a recirculation region, it is
expected to contain some amplified frequencies. The wavelet spectra for the velocity u are shown
in Figure 14(b). The wavelet power spectra does show two regions of power concentration, both
of them at a band 0.125�period�0.33 occurring at times 0.1�t�35 and 0.1�t�35, respectively.
However, the spectra does indicate that the two regions are a continuation of one another (only
that the band becomes narrower at 0.5�t�0.8), an indication of the uniform distribution of the
power throughout the life span of the signal. This is probably the main reason why the WFT does
not show any amplified frequencies for the velocity u. However, the wavelet power spectra still
provided more detailed information of the signal than the WFT.

The power spectra for the wall-normal velocity component v shown in Figure 14(c) does not
show significant contents (only low amplitude power concentration at quite narrow and low bands)
and it is not surprising that the WFT counterpart is quiet. The wavelet power spectrum contours
of the spanwise velocity w shown in Figure 14(d) indicates that there is a peak at lower bands
which occurred in a very short period (0.45�t�0.75) which cannot be distinguished in the WFT.
This is a clear indication of the shortcomings of the WFT method in extracting the smaller details
and contents of a signal.

Figures 15(a) and (b) show the WFT frequency spectra and the wavelet spectra for the stream-
wise and wall-normal velocity components u and v for point 8 at the edge of the shear layer.
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Figure 16. Low-pressure isosurfaces showing Kelvin–Helmholtz rolls undergoing pairing in helical mode
at varying times: (a) t = 0.1615 s; (b) t = 0.16625 s; and (c) t = 0.171 s.

The WFT spectra show amplified frequency band centred at f = 200Hz (St = 0.46), connected
to a broad band at approximately f = 1000Hz. The wavelet spectra shown in Figure 15(b) dis-
play power concentration at lower band (0.15�period�0.2) between 0.45�t�0.7 which smoothly
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Figure 17. Frequency spectra for the velocity u, v, and w at point 16 close to the lower
solid boundary within the recirculation region: (a) WFT frequency for u, v, and w

superimposed; and (b) wavelet spectra for u.

spread to a higher band of order 0.25�period�0.33 that took place at 0.75�t�1.05 (similar to
Figures 13(c) and (d)). It is most likely that the power concentration at the two bands are associ-
ated with the peak values noticed in the WFT spectra. This amplified frequency was also barely
apparent at points 10 and 13 both at the edge of the shear layer downstream of the separation
point. However, it gradually disappears for points 15, 18, 20, 22 and 25 at the edge of the shear
layer. The lower frequency ( f = 200Hz) corresponds to the vortex shedding which originates,
in the present case, from the pairing of vortices rolling-up at the fundamental instability fre-
quency of the separating shear layer. This is clearly shown in Figures 16(a)–(c) which visualize
the coherent structures in the flow using the low-pressure isosurfaces methodology. The snap
shots are taken at three consecutive 1000 time step intervals. The figures show that 2D K–H
rolls are shed from the separation line coagulate while convecting downstream. Eventually, such
structures collide with the previously shed structure and pair (merge) to form a larger counter
part (Figures 16(a) and (b)). The region between the separation line and 8h downstream of the
separation line is a region where K–H rolls pair and merge to form larger counterparts. They
come in contact with the lower solid boundary 8h downstream of the separation line (Figures
16(b) and (c)), after which they begin to break down into smaller 3D structures. This could
explain why the frequency peak fades for the points while moving downstream of the sepa-
ration line and especially after 8h downstream of the separation line and strengthens the fact
that pairing of K–H rolls could be responsible for this frequency peak. It is noticeable that this

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:175–206
DOI: 10.1002/fld



202 I. E. ABDALLA, M. J. COOK AND Z. YANG

f (Hz)

f (Hz)

E
u,

v,
w

,p
E

u,
v,

w
,p

10 -1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

100

101 102 103 104

101 102 103 104

u-spectra
v-slepctra
w-spectra
p-spectra
-5/3 slope

(a)

u-spectra
v-spectra
w-spectra
p-spectra
-5/3 slope

(b)

Figure 18. Frequency spectra for the velocity and pressure fields: (a) for point 30; and (b) for point 31.
There are compared with the − 5

3 slope line.

value is almost twice the value reported upstream of the separation and slightly higher than the
value of 0.225� St� 0.275 reported by Abdalla and Yang [14], Kiya and Sasaki [11] and Cherry
et al. [12] for the separated shear layer behind a blunt plate. Again, the wavelet power spectrum
(Figure 15(b)) shows more details than the WFT counterpart. A quite narrow and low banded but
clear power concentration appear to have taken place between 0.2�t�0.4 which cannot be traced in
the WFT spectra. However, overall the flow does not seem to be characterized by a strong shedding
phenomena which indicates the quick transition to turbulence in this type of separated–reattached
flow.

Figure 17(a) is a sample for the WFT spectra for points within the recirculation region and close
to the lower solid boundary (points 6, 11, 16 and 23 in Figure 10). The WFT frequency spectra
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for all these points show a similar trend to the one in Figure 17(a) which is quiet and contains
no apparent power concentration. The wavelet power (Figures 17(b)) does not show any distinct
features and the power seems uniformly distributed both at low and high bands and throughout
the time span of the signal.

Figures 18(a) and (b) are the WFT spectra for the velocity and pressure fields at point 30 and
31 in the developing turbulent boundary layer after the mean reattachment region. The spectra
for the rest of the points after the mean reattachment region (points 26, 27, 28, 29) show a
similar behaviour. The frequency spectra for both the velocity and pressure field are quiet. It is
expected that at this region the boundary layer starts to recover to its canonical form. However, the
reason that the spectra do not show a − 5

3 slope is due to the low turbulence Reynolds number of
the flow.

5. CONCLUSIONS

Transitional flow over a surface-mounted obstacle at low Reynolds number was simulated us-
ing the LES methodology with a dynamic-subgrid scale model. The mean field including the
mean reattachment length and the mean and rms values of the velocity field are in good agree-
ment with the available experimental and DNS data. The discrepancies in the results are at-
tributed to basic differences in the blockage ratio and the transitional nature of
the flow.

Extensive studies of the spectra using both the WFT and wavelet power spectrum revealed 3
modes of excited frequencies. The first is of order 105Hz (corresponding to a Strouhal number
St ≈ 0.242) and detected at points close to the separation line immediately upstream of the ob-
stacle. This value is in agreement with those reported for K–H instability in separated–reattached
flow. Due to the low value of the backflow velocity relative to the freestream velocity in the
current study, it is concluded that this frequency is due to the K–H instabilities in the shear
layer forming in the boundary of the small upstream separated region. The second peak is of
order 500Hz ( f �/U∞ ≈ 0.028) and captured by the pressure field close to the surface of the
obstacle. The value is comparable to the most amplified mode of free shear-layer disturbances
in the linear instability theory (reported by Dovgal [41] as f �/U∞ = 0.016) and attributed in
the current case to the interaction of the shed 2D K–H vortices with the solid surface. The third
frequency content of the spectra is of order 200Hz (St ≈ 0.46), mostly associated with lo-
cations at the edge of the shear layer and corresponds to the vortex shedding originating from
the pairing of vortices rolling-up at the fundamental instability frequency of the separating shear
layer.

The wavelet power spectra have shown compatible results with the WFT but capture more
smaller details of the signal than the WFT method. The results indicate that the WFT does
not capture the events that take place at narrow bands and those which occur over a short pe-
riod of time. In contrast, the wavelet spectra reveal the content of the signal regardless of how
much narrower the band is or how short the time is over which the event takes place. They
also give a qualitative indication of the amplitude of the signal with respect to the dominant
noise in the signal. Such detailed knowledge of the contents of a velocity or a pressure field
signal in separated–reattached flows is important as it facilitates understanding of the mechanisms
behind their existence, the frequency of their occurrence during the signal life-span, their am-
plitude (strength) and their interaction and development in time. This could be very helpful in
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designing methodologies to control such mechanisms (damping or exciting as required) to satisfy
the application purpose.
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NOMENCLATURE

C Smagorinsky model constant
Ep pressure spectra
EU streamwise velocity spectra
EV wall-normal velocity spectra
EW spanwise velocity spectra
h obstacle height
H channel height
i streamwise axis index
J largest resolvable scale (wavelet)
j wall-normal axis index
k spanwise axis index
l obstacle width
N total number of samples
p′ pressure fluctuation
S0 smallest resolvable scale (wavelet)
St Strouhal number
s wavelet scale
Ū mean streamwise velocity
U0 freestream velocity
u′ axial velocity fluctuation
urms rms value of the streamwise velocity
vrms rms value of the wall-normal velocity
x streamwise axis
xR mean reattachment length
y wall-normal axis
z spanwise axis
�x+ wall-normal mesh size in wall units
�y+ streamwise mesh size in wall units
�z+ spanwise mesh size in wall units
� boundary layer thickness
� total viscosity
� momentum thickness
� time parameter for wavelet function
�0 Morlet wavelet
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